
www.manaraa.com

Disk Scheduling in a Multimedia I/O System

A. L. N. REDDY
Texas A&M University
JIM WYLLIE
IBM Almaden Research Center
and
K. B. R. WIJAYARATNE
Snap Appliance Inc. (Division of Adaptec Inc.)

This article provides a retrospective of our original paper by the same title in the Proceedings of the First ACM Conference on
Multimedia, published in 1993. This article examines the problem of disk scheduling in a multimedia I/O system. In a multimedia
server, the disk requests may have constant data rate requirements and need guaranteed service. We propose a new scheduling
algorithm, SCAN-EDF, that combines the features of SCAN type of seek optimizing algorithm with an Earliest Deadline First
(EDF) type of real-time scheduling algorithm. We compare SCAN-EDF with other scheduling strategies and show that SCAN-
EDF combines the best features of both SCAN and EDF. We also investigate the impact of buffer space on the maximum number
of video streams that can be supported. We show that by making the deadlines larger than the request periods, a larger number
of streams can be supported.

We also describe how we extended the SCAN-EDF algorithm in the PRISM multimedia architecture. PRISM is an integrated
multimedia server, designed to satisfy the QOS requirements of multiple classes of requests. Our experience in implementing the
extended SCAN-EDF algorithm in a generic operating system is discussed and performance metrics and results are presented
to illustrate how the SCAN-EDF extensions and implementation strategies have succeeded in meeting the QOS requirements of
different classes of requests.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management—secondary storage; D.4.3 [Operating
Systems]: File Systems Management

General Terms: Algorithms, Performance

Additional Key Words and Phrases: I/O systems, disk scheduling, multimedia applications, real-time, performance evaluation

1. INTRODUCTION

Future I/O systems will be required to support continuous-media such as video and audio. Continu-
ous media put different demands on the system than data streams such as text. The real-time de-
mands of the requests need to be taken into account in designing a system. In this article, we will
use the terms real-time, video, continuous media, and periodic media interchangeably to describe

Authors’ addresses: A. L. N. Reddy, Department of Electrical Engineering, 214 Zachry, College Station, TX 77843; email: reddy@
ee.tamu.edu; J. Wyllie, K56-B3, IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120; email: wyllie@almaden.
ibm.com; K. B. R. Wijayaratne, Adaptec, Inc., 691 South Milpitas Blvd., Milpitas, CA 95035; email: ravi wijayaratne@adaptec.
com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first
page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists,
or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
c© 2005 ACM 1551-6857/05/0200-0037 $5.00

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005, Pages 37–59.

www.manaraa.com

38 • A. L. N. Reddy et al.

Fig. 1. Two streams of requests.

requests that have constant data rate requirements. We also use the terms server and I/O system
interchangeably.

A real-time request is denoted by two parameters (c, p), where p is the period at which the real-time
requests are generated and c is the service time required in each period. When c is a fixed value, it is
easy to specify a real-time request with these two variables. But, the disk service time for a request
depends on the random components of seek time, latency time and contention for the shared channel
for data transfer. Hence, we will specify the real-time requests by specifying the required data rate in
kbytes/sec.

The time at which a periodic stream is started is called the release time of that request. The time
at which a request is to be completed is called the deadline for that request. Requests that do not
have real-time requirements are termed aperiodic requests. Figure 1, illustrates the terminology used
in this article. The figure shows two streams of requests a and b that are released at times t0 and t1
respectively. Stream a is represented by a string of requests a0, a1, a2, . . . and b is represented by b0,
b1, b2,

In real-time systems, when requests may have to be satisfied within deadlines, algorithms such as
earliest deadline first, and least slack time first are used. The earliest deadline first (EDF) algorithm is
shown to be optimal [Liu and Layland 1973] if the service times of the requests are known in advance.
However, the disk service time for a request depends on the relative position of the request from
the current position of the read-write head. The original EDF algorithm assumed that the tasks are
preemptable with zero preemption cost and showed that tasks can be scheduled by EDF if and only if
the task utilization

∑n
i=1 ci/pi < 1. Current disks are however not preemptable. Recently it has been

shown that even when the tasks are nonpreemptable, EDF is an optimal policy [Jeffay et al. 1991].
However, due to the overheads of seek time, strict real-time scheduling of a disk arm may result in
excessive seek time cost and poor utilization of the disk.

Traditionally, disks have used seek optimization techniques such as SCAN or shortest seek time first
(SSTF) for minimizing arm movement in serving requests. These techniques reduce disk arm utilization
by serving requests close to the disk arm. The request queue is ordered by the relative position of the
requests on the disk surface to reduce seek overheads. Even though these techniques utilize the disk
arm efficiently, they may not be suitable for real-time environments since they do not have a notion of
time or deadlines in making a scheduling decision.

Another requirement is that the scheduling algorithm should be fair. For example, shortest seek
time first is not a fair scheduling algorithm since requests at the edges of the disk surface may get
starved. If the scheduling algorithm is not fair, an occasional request in the stream may get starved
of service and hence will result in missed deadlines. Hence, we will not use SSTF type algorithms in
our discussion. For the same reasons, the policy proposed in Abbott and Garcia-Molina [1990] is not
suitable for real-time application.

Available buffer space has a significant impact on the performance of the system. The constant data
rate of real-time requests can be provided in various ways. When the available buffer space is small,
the request stream can ask for small pieces of data in each period. When the available buffer space is
large, the request stream can ask for larger pieces of data with correspondingly larger periods between
requests. This trade-off is significant since the efficiency of the disk service is a varying function of
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

Disk Scheduling in a Multimedia I/O System • 39

the request size. We will study the impact of buffer space on the performance of various scheduling
policies. We also show that by deferring deadlines, which also increases the buffer requirements, the
performance of the system can be improved significantly.

To prove the correctness of the schedule, worst-case assumptions about seek and latency overheads
have to be made. When worst-case overheads are assumed, random disk service times can be bounded
by some constant service time. Another approach to making service times predictable is to make the
request size so large that the overheads form a smaller fraction of the request service time. This ap-
proach may result in large demands on buffer space. Our approach to this problem is to reduce the
overheads in service time by making more efficient use of the disk arm either by optimizing the ser-
vice schedule and/or by using large requests. By reducing the random overheads, we make the ser-
vice time more predictable. We utilize deadline extensions to reduce the uncertainties of meeting the
deadlines.

In this article, we propose a new scheduling algorithm, SCAN-EDF. SCAN-EDF is a hybrid algorithm
that incorporates the real-time aspects of EDF and seek optimization aspects of SCAN, CSCAN and
other such seek optimization policies.We will show that SCAN-EDF has good characteristics for sup-
porting multimedia requests. We also study the impact of buffer availability on the number of streams
that can be supported.

The PRISM architecture was designed to provide integrated services for periodic, interactive and ape-
riodic request streams. The interactive requests require prompt service with little latency. Both aperi-
odic and interactive request streams have random arrival and load patterns and both need starvation-
free service from the underlying storage system. For example, an FTP session downloading 1GB of
data is an aperiodic stream whereas a flight simulation retrieving an animated media stream is an
interactive stream. If there is a visible delay in fetching the data from the storage system, the user will
experience undesirable glitches in the simulation. Therefore, the interactive stream requires prompt
service from the underlying storage system.

We also describe how we extended SCAN-EDF algorithm to schedule Variable Bit Rate (VBR) periodic
streams in the PRISM architecture. The scope of our discussion is limited to the adaptations needed for
the SCAN-EDF algorithm to service periodic streams to minimize their missing deadlines in a mixed
media server environment and to prevent periodic request service from starving other service classes
of service. Lastly, we discuss the implementation strategies used to achieve the above two objectives
and to satisfy the architectural requirements in implementing periodic stream servers in a generic
operating system.

The remainder of this article is organized as follows: Section 2 describes the SCAN-EDF algorithm.
We present buffer usage strategies to facilitate and optimize the SCAN-EDF algorithm in section 3.
Section 4 presents simulation results of the SCAN-EDF algorithm. Section 5 analyzes the theory behind
the SCAN-EDF algorithm and correlates our findings to the results presented. Section 6, presents
adaptations to SCAN-EDF algorithm used in the PRISM architecture. We describe our approach in
implementing the extended SCAN-EDF algorithm in section 7. Section 8 presents the effects of the
implemented extended SCAN-EDF algorithm in the PRISM architecture. And lastly, sections 9 and 10
discuss related work and present our conclusions.

2. SCAN-EDF SCHEDULING ALGORITHM

The SCAN-EDF disk scheduling algorithm combines seek optimization techniques and EDF in the
following way. Requests with earliest deadline are served first. But, if several requests have the same
deadline, these requests are served by their track locations on the disk or by using a seek optimization
scheduling algorithm for these requests. In this article, deadlines are always in multiples of request pe-
riods. This strategy combines the benefits of both real-time and seek-optimizing scheduling algorithms.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

40 • A. L. N. Reddy et al.

Requests with earlier deadlines are served first, but requests with the same deadline make use of seek
optimization techniques to reduce the disk utilization.

SCAN-EDF applies seek optimization to only those requests having the same deadline. Its efficiency
depends on how often these seek optimizations can be applied, or on the fraction of requests that
have the same deadlines. The following techniques make it possible for various requests to have the
same deadlines. SCAN-EDF prescribes that requests have release times that are multiples of the pe-
riod p. This results in all requests having deadlines that are multiples p, which enables requests to
be grouped in batches and served accordingly. When streams have different data rate requirements,
SCAN-EDF can be combined with a periodic fill policy [Yee and Varaiya 1992] to let all the requests
have the same deadline. Requests are served in a cycle with each request getting an amount of ser-
vice time proportional to its required data rate, the length of the cycle being the sum of the service
times of all the requests. All the requests in the current cycle can then be given a deadline at the end
of the current cycle. These two techniques enhance the possibility of applying seek optimization in
SCAN-EDF.

A more precise description of the algorithm is given below.

SCAN-EDF algorithm
Step 1: Let T = set of requests with the earliest deadline
Step 2: if |T | = 1, (there is only a single request in T), service that request.
else let t1 be the first task in T in scan direction, service t1.
go to Step 1.

The scan direction can be chosen in several ways. In Step 2, if the tasks are ordered with the track
numbers of tasks such that N1 <= N2 <= · · · <= Nl , then we obtain a CSCAN type of scheduling
where the scan takes place only from smallest track number to the largest track number. If tasks are
ordered such that N1 >= N2 >= · · · >= Nl , then we obtain a CSCAN type of scheduling where the scan
takes place only from largest track number to the smallest track number. If the tasks can be ordered
in either of the above forms depending on the relative position of the disk arm, we get (elevator) SCAN
type of algorithm.

SCAN-EDF can be implemented with a slight modification to EDF. Let Di be the deadlines of the
tasks and Ni be their track positions. Then, the deadlines can be modified to be Di + f (Ni), where f ()
is a function that converts track numbers of the tasks into small perturbations to the deadlines. The
perturbations have to be small enough such that Di + f (Ni) > D j + f (N j), if Di > D j and requests i and
j are ordered in the SCAN order when Di = D j . We can choose f () in various ways. Some of the choices
are f (Ni) = Ni/Nmax or f (Ni) = Ni/Nmax −1, where Nmax is the maximum track number on the disk or
some other suitably large constant. For example, let tasks A, B, C and D have deadlines 500, 500, 500,
and 600 respectively and ask for data from tracks 347, 113, 851, and 256 respectively. If Nmax = 1000, the
modified deadlines of A, B, C and D become 499.347, 499.113, 499.851 and 599.256 respectively when
we use f (Ni) = Ni/Nmax − 1. When these requests are served by their modified deadlines, requests A,
B and C are served in the SCAN order of B, A and C and request D is served later.

3. BUFFER SPACE TRADE-OFF

Real-time requests typically need some kind of response before the next request is issued. Hence, the
deadlines for the requests are made equal to the periods of the requests. The multimedia I/O system
needs to provide a constant data rate for each request stream. This constant data rate can be provided
in various ways. When the available buffer space is small, the request stream can ask for small pieces
of data in each period. When the available buffer space is large, the request stream can ask for larger
pieces of data with correspondingly larger periods between requests. This trade-off is significant since
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

Disk Scheduling in a Multimedia I/O System • 41

Fig. 2. Arrangement of buffers for a single real-time stream.

the efficiency of the disk service is a varying function of the request size. The disk arm is more efficiently
used when request sizes are large; hence, it may be possible to support more multimedia streams on a
single disk. A stream of requests described by (c,p) supports the same data rate as a stream of requests
of (2c,2p) if larger buffers are provided.

Each request stream requires a buffer for the consuming process and one buffer for the producing
process (disk). If we decide to issue requests at the size of S, then the buffer space requirement for each
stream is 2S. If the I/O system supports n streams, the total buffer space requirement is 2nS. Figure 2(a)
shows the usage of the buffers for this process. In Figure 2(a), while buffer 1 is being consumed, an
outstanding request tries to fill buffer 2 and when buffer 2 is being consumed, an outstanding request
tries to fill buffer 1.

There is another trade-off that is possible. The deadlines of requests need not be chosen equal to
the periods of the requests. For example, we can defer the deadlines of the requests by a period and
make the deadlines of the requests equal to 2p. This gives more time for the disk arm to serve a
given request and may allow more seek optimizations than is possible when the deadlines are equal
to the period p. This results in a scenario where the consuming process is consuming buffer 1, the
producing process (disk) is reading data into buffer 3 and buffer 2 is filled earlier by the producer and
waiting consumption. Hence, this raises the buffer requirements to 3S for each request stream. This
arrangement is shown in Figure 2(b) where three buffers 1, 2 and 3 are used circularly to satisfy the
requests of a single stream. In general, when the requests are allowed to have deadlines that are mp,
the buffer requirements for each stream are (m + 1)S, where S is the size of the request in each period.
We will show in the next section that this strategy has significant benefits. The extra time available
for serving a given request allows seek optimization techniques to be applied more often to the request
queue at the disk. This results in more efficient use of the disk arm and as a result, a larger number of
request streams can be supported at a single disk. A similar technique called work-ahead is utilized by
Anderson et al. [1991].

It is shown that when all the deadlines are extended by a multiple of the periods, monotonic scheduling
achieves higher useful utilization of the resource [Lehoczky 1990]. It is shown that if the periods of all
requests are extended by the largest period, a modified rate monotonic scheduling algorithm is optimal
[Shih et al. 1992]. Both these studies assume that tasks are preemptable.

Both techniques, that is larger requests with larger periods and delayed deadlines, increase the start
up latency of real-time streams. When deadlines are delayed, the multimedia data stream cannot be
consumed until two buffers are filled as opposed to waiting for one filled buffer when deadlines are
equal to periods. When larger requests are employed, similarly longer time is taken before a buffer is
filled and hence a longer time before the multimedia stream can be started. Larger requests increase
the response time for aperiodic requests as well since the aperiodic requests will have to wait longer

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

42 • A. L. N. Reddy et al.

Table I. Disk Parameters
Time for one rotation 11.1 ms
Avg. seek 9.4 ms
sectors/track 84
sector size 512 bytes
tracks/cylinder 15
cylinders/disk 2577
seek cost function nonlinear
Min. seek time s0 1.0 ms

behind the current real-time request that is being served. The improved efficiency of these techniques
needs to be weighed against higher buffer requirements and higher start up latency.

We discussed two techniques, deferring deadlines and employing larger requests, in which increased
buffer space can improve the efficiency of disk scheduling. Quantitative evaluation and comparison of
these techniques will be provided in a later section.

4. PERFORMANCE EVALUATION

In this section, we present a simulation model and results to evaluate the algorithms.

4.1 Simulation Model

A disk with the parameters shown in Table I is modeled. It is assumed that the disk uses split-access op-
erations or zero latency reads. In split-access operation, the request is satisfied by two smaller requests
if the read-write head happens to be in the middle of the requested data at the end of the seek operation.
The disk starts servicing the request as soon as any of the requested blocks comes under the read-write
head. For example, if a request asks for reading blocks numbered 1,2,3,4 from a track of eight blocks
1,2,. . .,8, and the read-write head happens to get to block number 3 first, then blocks 3 and 4 are read,
blocks 5,6,7,8 are skipped over and then blocks 1 and 2 are read. In such operation, a disk read/write of
a single track will not take more than one single revolution. Split access operation of the disk has been
shown to improve the response time of the disk considerably in Reddy [1992]. Split-access operation,
besides reducing the service time of a request, also helps in reducing the variability in service time.

Each real-time request stream is assumed to require a constant data rate of 150 KB/sec. This roughly
corresponds to the data rate requirements for a 1x CD ROM data stream. Each request stream is
modeled by an independent request generator. The release times of the requests are dependent on the
scheduling policy employed as described below. The number of streams is a parameter to the simulator.

Aperiodic requests are modeled by a single aperiodic request generator. Aperiodic requests are as-
sumed to arrive with an exponential distribution. The mean time between arrivals is varied from 25
ms to 200 ms. If we allow unlimited service for the aperiodic requests, a burst of aperiodic requests can
disturb the service of real-time requests considerably. It is necessary to limit the number of aperiodic
requests that may be served in a given period of time. A separate queue could be maintained for these
requests and these requests can be released at a rate that is bounded by a known rate. A multimedia
server will have to be built in this fashion to guarantee meeting the real-time schedules. Hence, we
decided to model the arrival of aperiodic requests by a single request generator. In our model, if the
aperiodic requests are generated faster than they are being served, they are queued in a separate queue.
This model of service is shown in Figure 3.

The service policy for aperiodic requests depended on the scheduling policy employed. In EDF, SCAN-
EDF and STAG EDF, they are served using the immediate server approach [Lin and Tarng 1991] where
the aperiodic requests are given higher priority over the periodic real-time requests. The service sched-
ule for these three policies allows a certain number of aperiodic requests each period and when sufficient
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

Disk Scheduling in a Multimedia I/O System • 43

Fig. 3. Service model for serving real-time and aperiodic requests.

number of aperiodic requests are not present, the real-time requests make use of the remaining service
period. This policy of serving aperiodic requests is employed so as to provide reasonable response times
for both aperiodic and periodic requests. This policy is in contrast to earlier approaches where the em-
phasis has been only on providing real-time performance guarantees. In CSCAN, aperiodic requests
are served in SCAN order and in PCSCAN, aperiodic requests are served as explained earlier.

Each aperiodic request is assumed to ask for a track of data. With split-access operations, the service
time for a request asking for less than or equal to a track of data is bounded by the service time for a
track. Hence, this assumption is equivalent to assuming that no aperiodic request asks for more than
a track of data at a time. The request size for the real-time requests is varied among 1, 2, 5, or 15
tracks. The effect of request size on the number of supportable streams is investigated. The period
between two requests of a real-time request stream is varied depending on the request size to support
a constant data rate of 150 KB/sec. The requests are assumed to be uniformly distributed over the disk
surface.

Five scheduling policies are modeled. EDF is the strict earliest deadline first scheduling policy. SCAN-
EDF is the policy proposed earlier in Section 2. We used f (Ni) = Ni/Nmax − 1 to modify the deadlines.
CSCAN is the policy where the disk arm moves from the outermost request to the innermost request.
After serving the innermost request, the disk arm jumps back to the outermost request waiting to be
served. PCSCAN is a slight modification of CSCAN where aperiodic requests that are less than half the
number of tracks behind the disk arm are served immediately that is, out of the CSCAN arm movement
order. STAGEDF is an EDF policy with staggered release times. For this policy, the release times of
request streams are equally placed between 0 and the period p. For all the other policies, the release
times are at time zero. The relative merits of the various scheduling policies are studied.

Two systems, one with deadlines equal to the request periods and the second with deadlines equal
to twice the request periods are modeled. A comparison of these two systems gives insight into how
performance can be improved by deferring the deadlines.

Two measures of performance are studied. The number of real-time streams that can be supported
by each scheduling policy is taken as the primary measure of performance. We also look at the response
time for aperiodic requests. The response time for aperiodic requests cannot be unduly large. A good
policy will offer good response times for aperiodic requests while supporting a large number of real-time
streams.

Each experiment involved running 50,000 requests of each stream. The maximum number of support-
able streams n is obtained by increasing the number of streams incrementally until deadlines cannot be
met. Twenty experiments were conducted, with different seeds for random number generation, for each
point in the figures. The minimum among these values is chosen as the maximum number of streams
that can be supported. Each point in the figures is obtained in this way. The minimum is chosen (in-
stead of the average) in order to guarantee the real-time performance. We confirm the simulations later
through analysis.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

44 • A. L. N. Reddy et al.

Fig. 4. Performance of different scheduling policies.

4.2 Results

4.2.1 Maximum Number of Streams. Figure 4 shows the results from simulations. The dark lines
correspond to a system with normal deadlines (=p) and the other lines are for the system where dead-
lines are extended.

It is observed that deferring deadlines improves the number of supportable streams significantly
for all the scheduling policies. The performance improvement ranges from 4 streams for CSCAN to 9
streams for SCAN-EDF at a request size of 1 track.

When deadlines are deferred, CSCAN has the best performance. SCAN-EDF has performance very
close to CSCAN. EDF has the worst performance. EDF scheduling results in random disk arm movement
and this explains the poor performance of this policy. Figure 4 clearly shows the advantage of utilizing
seek optimization techniques.

Figure 4 also presents the improvements that are possible by increasing the request size. As the
request size is increased from 1 track to 15 tracks, the number of supportable streams keeps increasing.
The knee of the curve seems to be around 5 tracks or 200 kbytes. At larger request sizes, the different
scheduling policies make relatively less difference in performance. At larger request sizes, the transfer
time dominates the service time. When seek time overhead is a smaller fraction of service time, the
different scheduling policies have less scope for optimizing the schedule. Hence, the performance of all
the scheduling policies does not differ significantly at larger request sizes. At a request size of 5 tracks,
that is, 200 kbytes/buffer, minimum of 2 buffers/stream corresponds to 400 kbytes of buffer space per

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

Disk Scheduling in a Multimedia I/O System • 45

Fig. 5. Aperiodic response time with different scheduling policies.

stream. This results in a demand of 400 kbytes * 20 = 8Mbytes of buffer space at the I/O system for
supporting 20 streams. If deadlines are deferred, this corresponds to a requirement of 12 Mbytes. When
that buffer space is unavailable, smaller request sizes need to be considered.

At smaller request sizes, deferring the deadlines has a better impact on performance than increasing
the buffer size. For example, at a request size of 1 track and deferred deadlines (with buffer requirements
of 3 tracks) EDF supports 13 streams. When deadlines are not deferred, at a larger request size of 2
tracks and buffer requirements of 4 tracks, EDF supports only 12 streams. A similar trend is observed
with other policies as well. A similar observation also seems to hold when request sizes of 2 and 5 tracks
are compared.

Figure 4 also shows that staggering the deadlines of the requests had an impact on the number of
supportable streams when the deadlines are not extended. When deadlines are not extended, STAGEDF
has considerably better performance than EDF. But, when deadlines are extended, the two policies have
almost no difference in performance. In general, staggering deadlines is not exactly feasible. When all
the requests arrive at once, it is possible to make the release times uniformly distributed between 0
and p. In our simulations, we assumed this scenario. But when requests are incrementally allowed to
arrive, this uniform distribution will not be possible.

4.2.2 Aperiodic Response Time. Figure 5 shows the response time for aperiodic requests. The figure
shows the aperiodic response time when 8, 12, 15, and 18 real-time streams are being supported in
the system at request sizes of 1, 2, 5, and 15 tracks respectively. It is observed that CSCAN has the
worst performance and SCAN-EDF has the best performance. With CSCAN, on an average, an aperiodic
request has to wait for half a sweep for service. This may result in waiting behind half the number of
real-time requests. In SCAN-EDF, EDF, and STAGEDF, aperiodic requests are given higher priorities
by giving them shorter deadlines (e.g., 100 ms from the issuing time). In these strategies, requests
with shorter deadlines get higher priority. As a result, aperiodic requests typically wait behind only the

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

46 • A. L. N. Reddy et al.

Fig. 6. Aperiodic response time as a function of number of streams.

current request that is being served. As a result, aperiodic requests have to wait, on an average, for
about half the service time of a single real-time request. Among these three policies, the slightly better
performance of SCAN-EDF is due to the lower arm utilizations.

From Figures 4 and 5, it is seen that SCAN-EDF performs well under both measures of performance.
CSCAN performs well in supporting real-time requests but does not have very good performance in serv-
ing the aperiodic requests. EDF does not perform very well in supporting real-time requests but offers
good response times for aperiodic requests. SCAN-EDF supports almost as many real-time streams
as CSCAN and at the same time offers the best response times for aperiodic requests. When both the
performance measures are considered, SCAN-EDF has better characteristics.

When deadlines are deferred, smaller request sizes can be used to support the same number of
real-time streams at the disk. This improves the aperiodic request response time besides reducing the
demand on the buffer space needed at the I/O system. When deadlines are not deferred, the aperiodic
requests have to wait behind larger requests when supporting the same number of real-time streams.
Hence, the aperiodic response time suffers. This effect is shown in Figure 6, which shows the aperiodic
response time with various scheduling policies at 80% of the maximum number of supportable streams.
Figure 6 shows that, it is better to defer deadlines than to use a larger request size since better aperiodic
response times are obtained.

Figure 7 shows the effect of aperiodic request arrival rate on the number of real-time streams that
can be supported. It is observed that the aperiodic request arrival rate has a significant impact on all
the policies. Except for CSCAN, all other policies support less than 5 streams at an interarrival time of
25 ms. Figure 7 shows that the interarrival time of aperiodic requests should not be below 50 ms if more
than 10 real-time streams need to be supported at the disk. CSCAN treats all requests equally and
hence a higher aperiodic request arrival time only reduces the time available for the real-time request
streams and does not alter the schedule of service. In other policies, since aperiodic requests are given
higher priorities, a higher aperiodic request arrival rate results in less efficient arm utilization due to
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

Disk Scheduling in a Multimedia I/O System • 47

Fig. 7. Effect of aperiodic request arrival rate on the number of streams.

more random arm movement. Hence, other policies see more impact on performance due to the higher
aperiodic request arrival rate.

4.2.3 Performance with an Array. Figure 8 shows the performance of various policies, at an aperiodic
request inter-arrival time of 200 ms, when an 8-disk array is employed in a RAID3 configuration without
parity protection (i.e., all 8 disk arms are tied together with a transfer rate of 8 times that of a normal
disk). This configuration is known to offer good performance for sequential transfers [Patterson et al.
1988; Kim 1986; Salem and Garcia-Molina 1986; Reddy and Banerjee 1989]. Performance of all the
policies is improved by nearly 8-fold. It is observed that the performance differences between SCAN-
EDF and EDF are higher with an array than with a single disk. This improvement is primarily due to
the fact that seek time is a bigger fraction of the service time in the array.

4.2.4 Multiple Data Rates. Figure 9 shows the performance of various scheduling policies when
requests with different data rates are served. The simulations modeled an equal number of three
different data rates of 150 kB/sec, 8 kB/sec and 176 kB/sec with aperiodic requests with an inter-arrival
time of 200 ms. Even with multiple data rate requirements, SCAN-EDF supports almost as many
streams as CSCAN and more than EDF.

5. ANALYSIS OF SCAN-EDF

In this section, we will present an analysis of the SCAN-EDF policy and show how request service can
be guaranteed. We assume that the disk seek time can be modeled by the following equation s(m) =
s0 + m ∗ s1, where s(m) is the seek time for m tracks, and s0 is the minimum seek time. This equation
assumes that the seek time is a linear function of the number of tracks. This simplifying assumption
makes analysis easy (in simulations earlier, we used the actual measured seek function of an IBM disk).
The value of s1 can be chosen such that the seek time function s(m) gives an upper bound on the actual
seek time. Let M denote the number of tracks on the disk and T the track capacity. We will denote the

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

48 • A. L. N. Reddy et al.

Fig. 8. Performance of various policies with a disk array.

Fig. 9. Performance of various policies with multiple data rates.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

Disk Scheduling in a Multimedia I/O System • 49

required data rate for each stream by C. We also assume that the disk requests are issued at a varying
rate, but always in multiples of track capacity. Let kT be the request size. Since C is the required data
rate for each stream, the period for a request stream p = kT/C. If r denotes the data rate of the disk
in bytes/sec, r = T/(rotation time). We assume the disk employs a split-access operation and hence
no latency penalty. This analysis also assumes there are no aperiodic requests. These assumptions are
made so that we can establish an upper bound on performance.

SCAN-EDF serves requests in batches. Each batch is served in a scan order for meeting a particular
deadline. We assume that the batch of n requests are uniformly placed over the disk surface. Hence the
seek time cost for a complete sweep of n requests can be given by s1 ∗ M + n ∗ s0. This assumes that
the disk arm sweeps across all M tracks in serving the n requests. The read time cost for n requests
is given by n ∗ kr. The total time for one sweep is the time taken to serve the n requests plus the time
taken to move the disk arm back from the innermost track to the outermost track. This innermost
track to outermost track seek takes s0 + M ∗ s1 time. Hence, the total time for serving one batch of
requests is given by Q = (n ∗ s0 + M ∗ s1 + n ∗ kr) + s0 + M ∗ s1 = n ∗ (s0 + kr) + 2M ∗ s1 + s0. The
worst-case for a single stream results when its request is the first request to be served in a batch and
is the last request to be served in the next batch of requests. This results in roughly 2Q time between
serving two requests of a stream. This implies the number of streams n is obtained when p = 2Q or n =
(kT/C−4M ∗s1−2∗s0)/2∗(s0+kr). However, this bound can be improved if we allow deadline extension.
If we allow the deadlines to be extended by one period, the maximum number of streams n is obtained
when n = (kT/C − 2M ∗ s1 − s0)/(s0 + kr).

The time taken to serve a batch of requests through a sweep, using SCAN-EDF, has little variance.
The possible variances of individual seek times could add up to a possible large variance if served by a
strict EDF policy. SCAN-EDF reduces this variance by serving all the requests in a single sweep across
the disk surface. SCAN-EDF, by reducing the variance, reduces the time taken for serving a batch of
requests and hence supports a larger number of streams. This reduction in the variance of service time
for a batch of requests has a significant impact on improving service time guarantees. Larger request
sizes, and split-access operation of the disk arm also reduce the variance in service time by limiting the
variable portions of the service time to a smaller fraction.

Figure 10 compares the predictions of analysis with results obtained from simulations for extended
deadlines. For this experiment, aperiodic requests were not considered and hence the small difference
in the number of streams supportable by SCAN-EDF from Figure 4. It is observed that the analysis is
very close to the simulation results. The error is within one stream for all request sizes examined.

6. SCAN-EDF IN PRISM ARCHITECTURE

In PRISM, we extended SCAN-EDF to handle a third class of requests, namely interactive requests that
require short latencies. The conceptual diagram of the PRISM architecture is illustrated in Figure 11,
which closely resembles the original SCAN-EDF approach shown in Figure 3. The periodic, aperiodic
and interactive requests go through an admission controller which admits streams based on a static
bandwidth allocation to each class [Wijayaratne and Reddy 2000]. The disk I/O scheduler schedules
these requests to achieve 4 main objectives.

—Meet soft real-time requirements of VBR periodic streams.
—Provide prompt response for interactive streams.
—Provide best effort starvation free service for aperiodic streams
—Maximize storage system throughput and fairness among service classes.

A detailed description and analysis of the PRISM disk scheduling algorithm to achieve the above goals
is described in Wijayaratne [2001]. What is relevant to this discussion is how we adapted SCAN-EDF

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

50 • A. L. N. Reddy et al.

Fig. 10. Comparison of analysis with simulation results.

Fig. 11. Basic model for supporting multiple QOS levels.

to meet the additional requirements of interactive requests and how we dealt with practical issues in
implementing SCAN-EDF. While periodic requests needed at time t + 1 can be assumed to arrive at
the scheduler at time t − 1 as described in Section 3, aperiodic and interactive request arrival cannot
be predetermined and is asynchronous to the scheduling intervals.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

Disk Scheduling in a Multimedia I/O System • 51

We first schedule the periodic requests using the SCAN-EDF algorithm as described in Section 2. Be-
fore scheduling any other type of request we calculate the slack time available in the current scheduling
period. If the slack time is less than zero, non-periodic requests are not scheduled. When SCAN-EDF
order needs to be disturbed for scheduling the next request, we charge it a worst-case disk seek time
in the process of calculating the slack time. These adaptations to SCAN-EDF would potentially starve
aperiodic and interactive requests if periodic requests are admitted without any policing. However, the
admission controller restricts the periodic streams to its static system-wide bandwidth based on con-
servative service time estimates. Therefore, the possibility of aperiodic and interactive requests getting
no service for an extended period is greatly minimized.

SCAN-EDF assumes periodic streams require CBR service. However, later work on video compres-
sion has shown the usefulness of using VBR streams for improving quality [Chang and Zakhor 1994].
VBR streams have variable data rate requirements over time. While VBR streams can be treated as
CBR streams for scheduling purposes by considering the worst-case data rate requirements, consider-
able performance degradation due to overcommitment of resources can result with such an approach
[Wijayaratne and Reddy 1999b; Shenoy et al. 1999]. PRISM noted that the aggregate load of periodic
streams at the device scheduler is what is important for scheduling, rather than individual stream
requirements. Hence, periodic admission controller keeps track of aggregate system load of periodic
streams and combines this with the load of an incoming request to decide if a periodic stream can be
admitted within specified latency bounds without violating the aggregate bandwidth allocated to peri-
odic requests. This approach smooths out demands across multiple streams which provides considerable
improvement in performance [Wijayaratne and Reddy 2000].

In PRISM, both periodic and aperiodic requests are scheduled based on the SCAN-EDF algorithm.
Aperiodic requests are serviced in SCAN order as long as slack time to service periodic requests exists.
The moment the slack time becomes less than zero, all nonperiodic requests are overlooked. Scheduling
instances occur in shorter durations than the main period—the period of all periodic requests. On each
scheduling instance an interactive request is scheduled. All interactive requests are scheduled in FIFO
order to reduce the waiting time of requests, subject to the availability of sufficient slack time to service
all scheduled periodic requests. If the SCAN order has to be disturbed to schedule the next interactive
request, we select a set of candidate requests clustered around the scheduled interactive request and
schedule that cluster in SCAN order.

7. SCAN-EDF IMPLEMENTATION

The PRISM architecture was implemented in the Linux operating system version 2.2. The SCAN-EDF
algorithm was used to schedule periodic requests to the disk I/O subsystem. The following architectural
support was needed to implement SCAN-EDF algorithm in a server which provides integrated services.

—A QOS context management module.
—File system and kernel support to accommodate prioritizing requests and maintaining QOS param-

eters of various streams.
—An architecture for layered drivers.

A disk I/O scheduler needs to distinguish to which service class each I/O request belongs in order
to prioritize and scheduled requests. Therefore, an association of binding the service class to the disk
I/O request is needed inside the operating system. There is a broad selection of techniques in which
this association can be made. A file can be labeled as a periodic file by storing its service class in the
file’s inode or in an extended attribute. However, in such case, all instances of the opened file would
receive the labeled service class which is not desirable as a file may be used for different purposes.
The process that accesses the stream may be labeled with its service class. The disadvantage of this

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

52 • A. L. N. Reddy et al.

approach is that other files accessed by the labeled process will receive the service class of the pro-
cess that is not desirable. Furthermore, the process context is lost in the disk I/O scheduler level of
the operating system, which mostly is executed in an interrupt context. Therefore, the more appropriate
strategy is to associate the runtime instance of the opened file structure with the its service class. The
QOS context management module provides the system call interface and the association of the runtime
opened file structures to their service classes.

A disk I/O request will percolate through the system call interface, the virtual file system switch, the
native file system, the buffer caches, the block device abstraction layers and the disk device drivers. The
disk I/O request will mutate into allocated pages to buffers to disk I/O request structures. The operating
system support is needed to carry the service class all the way from the system call interface to the disk
device driver to make the association of the service class to the disk I/O request. Furthermore, at the
block device interface level, the service class context of a disk I/O request may be lost due to coalescing
of requests. Therefore, attention must be given not to lose the service class context of disk I/O requests
at the block device interface layer.

In most file systems, the file metadata is stored in inodes and several indirection blocks. The metadata
needs to be read to determine where the data is stored in the disk. Therefore, failure to read metadata, if
scheduled in a lower priority could cause periodic streams to miss deadlines. In the PRISM architecture
for the SCAN-EDF scheduler, we had a separate thread to prefetch metadata to ensure such failures
did not occur. Furthermore, critical system-generated disk I/O such as page swapping needs higher
priority than other request streams so that system housekeeping is not disrupted due to prioritizing of
the disk I/O requests.

Many operating systems allocate file system buffers to maximize memory utilization and to make
sure that all processes receive a fair share of the memory. Therefore, a chunk of memory is allocated
and the process is made to wait until that chunk of data is fetched from the disk before another chunk is
allocated. This strategy conflicts with our assumption that periodic requests need to be at the scheduler
before the main period is started in which the requests are scheduled. Therefore, in PRISM for periodic
requests, we allocate buffers for the full request and submit that request to the disk subsystem.

For the SCAN-EDF algorithm, the scheduler has to have the capability of manipulating all disk bound
I/O requests. The disk I/O traffic is generated by several entities in a typical operating system such as
explicit disk I/O requests (e.g., read() or write() system calls) or operating system events (e.g., page
faults) or house keeping procedures (e.g., buffer cache synchronization processes) [Card et al. 1998]. All
these requests go through the operating system block device support layer. Therefore, the best location to
place the SCAN-EDF scheduler in PRISM is between the operating system block device support routines
and the disk device driver. Most current operating systems provide such a facility even though in PRISM
we needed to implement a driver layering facility with call backs to signal scheduling events in Linux 2.2.

A kernel timer facility is necessary for the PRISM disk I/O scheduler [Wijayaratne and Reddy
2000] to function. Most contemporary kernels provide such timer facilities. The scheduler routines
that get invoked when a scheduling instance occurs need to be reentrant as these routines would
typically be scheduled in the interrupt context. The layered driver call back facility can be used to
create a scheduling instance event when the device driver request queues become empty. The scheduler
implements its own queues which holds the I/O requests until they are scheduled to the device. A
dispatcher invoked at scheduling instance can schedule requests from the internal scheduler queues
to the device queues. There needs to be an instance of the scheduler per disk in a multidisk array. If
the scheduler is implemented using the layered driver architecture, it can be a self-contained module.
Therefore, it is possible to detach the scheduler from the PRISM server and place it at a remote storage
device away from the file server. This flexibility will be advantageous if PRISM is deployed in a network-
attached storage device or a storage area network environment.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

Disk Scheduling in a Multimedia I/O System • 53

Table II. Testbed Parameters
CPU PII

233MHz
Disk capacity 4.3 Gb
Maximum heads 15
Maximum cylin-
ders

8896

Track to track seek
time

3ms

Average seek time 11ms
Maximum seek
time

21ms

Average latency 5.5ms
Spindle speed 90 rev/s
Head switch time 890µs
Sectors per track 63
Sector size 512
Minimum media to
buffer bandwidth

68
Mbits/s

Maximum media to
buffer bandwidth

135.5
Mbits/s

Total memory 196 MB

SCAN-EDF and PRISM are based on a server-push notion of service where the server fetches data
for periodic clients at regular intervals. However, most file systems, including NFS used in PRISM, are
based on a client-pull architecture where data is only fetched when requested by the client. To bridge
this gap, a prefetch thread is created for each active periodic stream. The prefetch thread conforms to
the server-push scheduling order and when the client requests arrive at the server, they will see buffer
hits, obviating the need for disk accesses on request arrival.

File systems typically require metadata accesses for accessing file data. These accesses need to be
accounted for in keeping track of resource usage and availability. Metadata accesses are initiated by
the kernel and cannot be directly associated with a service class without extensive modifications to
the kernel. However, metadata accesses need at least the same level of service as the data file. PRISM
solves this problem by allowing metadata accesses as interactive requests and preallocating system
resources for these accesses. Our experiments showed that because of high buffer hits to metadata,
about 5–10% of system resources are sufficient for serving metadata requests.

8. EXTENDED SCAN-EDF PERFORMANCE

The PRISM implementation was run on a system with a configuration listed in Table II. In our testbed,
periodic applications read 50 Mb MPEG files. The access pattern was derived after modifying the
MPEG frame traces obtained from Rose [1995]. To read the 50 Mb file according to the access trace, the
experiment had to be run between 2.5 to 5 minutes. The block size for periodic streams was set to 64 Kb.
The aperiodic and interactive access streams were simulated by bursty traffic sources. The off time for
these sources was randomly selected with an average of 70 ms. The number of data bytes requested
on each interval was randomly distributed between 4 and 12 Kb. These random reads simulate typical
file system accesses. The performance data, unless otherwise stated, was measured at the application.
The admission controllers were disabled when required.

Where relevant, we compared the performance of the PRISM architecture disk I/O scheduler with
Linux operating system version 2.2 running on the same hardware platform.

We briefly present results from real experiments on PRISM. The details of the configurations and
the tests can be found elsewhere [Wijayaratne 2001]. Figure 12 illustrates the influence of the aperiodic
traffic on the periodic streams. There were 4 periodic streams and 10 interactive streams in the system.
The fraction of deadlines missed for both I/O requests and bytes requested was less than 2%. For
Linux, the percentage of data and I/O requests missing deadlines increased up to 25.5% for I/O requests
and 34.9% for bytes requested. Similar performance figures were experienced with the variation of
the number of interactive threads. These results clearly demonstrate that in adapted SCAN-EDF the
periodic streams are well insulated from aperiodic and interactive traffic. Increases in traffic of either
service class cannot cause periodic streams to miss deadlines.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

54 • A. L. N. Reddy et al.

Fig. 12. Influence of aperiodic traffic.

Fig. 13. Influence of aperiodic traffic on disk I/O bandwidth utilization.

Figure 13 illustrate how various service classes share the disk I/O bandwidth. In this experiment,
periodic streams were limited by an admission controller to utilize only 50% of the I/O bandwidth. The
interactive streams were allocated 25% of the bandwidth by a rate controller. The amount of aperiodic
traffic cannot considerably influence the periodic or interactive disk utilization. However, aperiodic
disk utilization increases with the aperiodic load demonstrating the work conserving nature of the
PRISM disk scheduler. Although periodic streams have an allocated share of 50% of the bandwidth, the
disk utilization for periodic streams is about 40%. This underutilization is primarily due to the VBR
nature of the streams and the use of worst-case service time estimates in the admission controllers.
Because interactive requests get preferred best-effort service, the interactive requests receive more than
the allocated share of bandwidth. In Section 6, we stated that the SCAN-EDF schedule will disturb
the schedule for interactive requests. A full surface seek time is charged to interactive request in such
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

Disk Scheduling in a Multimedia I/O System • 55

Fig. 14. SCAN-EDF performance on NFS.

cases to be conservative in the slack time calculation. The additional seek time is charged to interactive
requests though a cluster of requests around the interactive request benefit from the additional seek.
Therefore, interactive requests seem to utilize more than its allocated share of bandwidth.

Figure 14 illustrates the periodic stream performance for NFS on PRISM. We had one periodic stream
active at the NFS client. The periodic block size was 64 Kb. Up to 2.5 seconds worth of data was buffered
at the client before the periodic stream started to counter the network delay variation. The experiment
was conducted for PRISM and Linux version 2.2. For PRISM, no blocks missed deadlines, in other
words, all the data points are on the x-axis in the figure. However, for Linux the fraction of data blocks
missing deadlines increased from 10.15% to 40.10%.

9. DISCUSSION AND RELATED WORK

Some of the parameters considered in our original paper seem dated now, within a time of little more
than 10 years. For example, the considerations based on 1.5 Gb disks, and the availability of 12 Mb buffer
space seem unimportant with currently available disks and memory. At the same time, our original
paper considered supporting 1.5 Mbps CBR streams. DVD quality streams require 3–10 Mbps and
HDTV streams require even higher data rates (7-22 Mbps). As the hardware characteristics improve,
our quality requirements tend to improve and the SCAN-EDF algorithm seems even more relavent
today. The realization of SCAN-EDF in practice in PRISM required a number of innovations beyond
the basic algorithm, highlighting the difficulties in bringing theory into practice.

Since the publication of the SCAN-EDF paper [Reddy and Wyllie 1993], disk I/O scheduling in mul-
timedia servers has received significant attention. This body of work can be broadly categorized under:
(a) algorithms for scheduling video streams, (b) algorithms for scheduling multiple classes of requests
including video streams, and (c) architectural support for QOS aware scheduling.

Typically, systems that need to schedule only video streams are video-on-demand servers. In addition
to meeting deadlines of requests, they may have added requirement of providing premium video services
such as rewind, fast forward, pause etc. [Reddy and Haskin 1996; Yu et al. 1993; Chen et al. 1994, 1995;
Jayanta et al. 1994]. In the Tiger-Shark video server from IBM [Haskin 1998], the disk requests are
scheduled based on the EDF algorithm. Many algorithms extended the EDF algorithm by making
scheduling decisions based on read/write head seek optimization strategies [Chen et al. 1991; Abbott

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

56 • A. L. N. Reddy et al.

and Garcia-Molina 1990; Chang et al. 2000]. Most of these algorithms balance the demands for fairness
of scheduling, meeting request deadlines, buffer requirements and seek optimization. In the Tiger video
server from Microsoft, the requests are scheduled cyclically among several distributed storage nodes
[Bolosky et al. 1997]. Scheduling considerations of VBR video streams are evaluated in Makaroff et al.
[1997], Wijayaratne and Reddy [1999b], and Shenoy et al. [1999].

Mixed media schedulers deal with the general problem of scheduling the periodic video request
streams along with the demands of other service classes. These schedulers may employ multiple lev-
els of control/scheduling. One level employs class-specific controllers/schedulers while another level
may coordinate across multiple classes of requests [Shenoy and Vin 1998; Wijayaratne and Reddy
1999a; Lund and Goebel 2003]. In PRISM, the class specific scheduler is combined with the admission
controllers. In storage system architectures presented in Martin et al. [1996], Rompogiannakis et al.
[1998], and Bosch et al. [1999], single layer disk schedulers reschedule disk I/O requests based on spe-
cific needs of the service classes. The schedulers employ dynamic request priorities based on available
slack time for requests, deadlines, consumed quota of allocated bandwidth, and the proximity to the
disk read/write head [Shenoy and Vin 1998; Wijayaratne and Reddy 1999a; Lund and Goebel 2003;
Bruno et al. 1999; Anderson et al. 1992; Rompogiannakis et al. 1998]. A theoretical background in mak-
ing disk I/O scheduling decisions based on multiple criteria is presented in Mokbel et al. [2004]. Some
mixed media schedulers give higher priorities to aperiodic requests over periodic requests based on the
immediate server approach used in the SCAN-EDF algorithm [Martin et al. 1996] whereas others are
more oriented toward servicing deadline sensitive data and service aperiodic streams only based on the
available slack times [Anderson et al. 1992].

Multimedia storage architectures differ in how they deviate from standard storage architectures
to provide QOS sensitive service to data request streams. A summary of such special architectural
considerations is presented in Plagemann et al. [2000]. For special treatment of data access streams,
their QOS context needs to be established and the binding to the access streams maintained as long
as the data session is active. In video servers presented in Freedman and DeWitt [1995], Chiueh et al.
[1996], Haskin [1998], and Bolosky et al. [1997], the QOS context is predetermined as the servers only
service video streams. In the RT-Mach mixed media server, the QOS context is bound to the thread that
is spawned to service the request stream [Molano et al. 1997] whereas in the PRISM, Fellini and CMFS
mixed media architectures, the QOS context is bound to the opened instance of the file containing the
data [Wijayaratne and Reddy 2001; Martin et al. 1996; Anderson et al. 1992]. In the Eclipse architecture,
the QOS context is established and maintained by using the file system name space [Blanquer et al.
1999].

Real-time data access in file systems is contingent upon the real-time availability of file system
metadata blocks. Some systems propose special data block placement policies to minimize the need for
real-time metadata [Shenoy et al. 1998]. Some architectures propose special metadata prefetch threads
[Wijayaratne and Reddy 2001] or special control paths to access file system metadata [Lougher and
Shepherd 1993]. Data block striping among a set of storage devices is used to optimize data access and
improve fault tolerance. Most multimedia architectures utilize the special characteristics of continuous
media to determine stripe sizes and adjacency of data blocks [Shenoy et al. 1998] to facilitate efficient
disk I/O scheduling.

10. CONCLUSION

This article presented a new disk scheduling algorithm, SCAN-EDF. SCAN-EDF is a hybrid scheduling
policy that combines the features of real-time scheduling policies and traditional seek optimization
policies. SCAN-EDF with deferred deadlines is shown to perform well in multimedia environments.
SCAN-EDF employs an immediate server approach to provide reasonable performance to aperiodic
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

Disk Scheduling in a Multimedia I/O System • 57

requests at the same time supporting a large number of real-time streams. Larger requests and deferred
deadlines are shown to improve performance significantly. We have done comparative evaluation of
these techniques to show that, for a given amount of buffer space, deferring deadlines is a better trade-
off than using larger requests in a multimedia I/O system.

We also described an extended SCAN-EDF algorithm implemented in the PRISM architecture. We
presented the architectural pre-requisites for implementing SCAN-EDF and discussed our implemen-
tation strategy. We established that in a mixed media environment admission controllers are necessary
to keep service classes from monopolizing the disk I/O bandwidth and special consideration is needed
to ensure that periodic streams do not miss deadlines. We presented the architectural support provided
in PRISM to maintain the QOS context and to integrate the scheduler into the system. Our results
show that PRISM improves class-specific service compared to native Linux system.

REFERENCES

ABBOTT, R. AND GARCIA-MOLINA, H. 1990. Scheduling I/O requests with deadlines: A performance evaluation. In Proceedings of
the IEEE Real-Time Systems Symposium. IEEE Computer Society Press, Los Alamitos, Calif. 113–124.

ANDERSON, D. P., OSAWA, Y., AND GOVINDAN, R. 1992. A file system for continuous media. ACM Trans. Comput. Syst. 10, 4 (Nov.),
311–337.

ANDERSON, D. P., OSAWA, Y., AND GOVINDAN, R. 1991. Real-time disk storage and retrieval of digital audio/video data. Tech. rep.
UCB/CSD 91/646, University of California, Berkeley, Calif..

BLANQUER, J., BRUNO, J., GABBER, E., MCSHEA, M., OZDEN, B., AND SILBERSCHATZ, A. 1999. Resource management for QOS in
Eclipse/BSD. FreeBSD Conference. Available HTTP:http://freebsdcon.org/1999/exhibitors/; accessed April 2000.

BOLOSKY, W. J., FITZGERALD, R. P., AND DOUCER, J. R. 1997. Distributed schedule management in the tiger video file server. In
Proceedings of the ACM Symposium on Operating Systems Principles. ACM, New York, 212–223.

BOSCH, P., MULLENDER, S. J., AND JANSEN, P. G. 1999. Clockwise: A mixed-media file system. In Proceedings of the IEEE
International Conference on Multimedia Computing and Systems 2. IEEE Computer Society Press, Los Alamitos, Calif., 277–
281.

BRUNO, J., BRUSTOLINI, J., GABBER, E., OZDEN, B., AND SILBERSHATZ, A. 1999. Disk scheduling with quality of service guarantees.
In Proceedings of the IEEE International Conference on Multimedia Computing and Systems 2. IEEE Computer Society Press,
Los Alamitos, Calif., 400–405.

CARD, R., DUMAS, E., AND MEVEL, F. 1998. The Linux Kernel Book. Wiley, New York, Chap. 3–16.
CHANG, E. AND ZAKHOR, A. 1994. Scalable video data placement on parallel disk arrays. In Proceedings of the SPIE Symposium

on Electronic Imaging Science and Technology. 208–221.
CHANG, R. I., SHIH, W. K., AND CHANG, R. C. 2000. Deadline modification scan with maximum scannable groups for multimedia

real-time disk scheduling. In Proceedings of the Real-Time Systems Symposium 19, 149–168.
CHEN, H. J., KRISHNAMURTHY, A., LITTLE, T. D., AND VENKATESH, D. 1995. A scalable video-on-demand service for the provision of

VCR-like functions. In Proceedings of the of IEEE Conference on Multimedia Computing and Systems. IEEE Computer Society
Press, Los Alamitos, Calif., 65–72.

CHEN, M. S., KANDLUR, D., AND YU, P. S. 1994. Support for fully interactive playout in a disk-array-based video server. In
Proceedings of the ACM Multimedia Conference. ACM, New York, 391–398.

CHEN, S., STANKOVIC, J. A., KUROSE, J. F., AND TOWSLEY, D. 1991. Performance evaluation of two new disk scheduling algorithms
for real-time systems. J. Real-Time Syst. 3, 307–306.

CHIUEH, T., VENKATRAMANI, C., AND VERNICK, M. 1996. Design of the stony brook video server. In Proceedings of the SPIE First
International Symposium on Technologies and Systems for Voice, Video and Data Communications 2604, 133–145.

FREEDMAN, C. AND DEWITT, D. 1995. The SPIFFI scalable video-on-demand system. In Proceedings of the ACM SIGMOD
Conference. ACM, New York, 352–363.

HASKIN, R. L. 1998. Tiger Shark—A scalable file system for multimedia. IBM J. Res. Develop. 42, 2 (Mar), 185–197.
JAYANTA, K. D., SALEHI, J. D., KUROSE, J. F., AND TOWSLEY, D. 1994. Providing vcr capabilities in large-scale video server. In

Proceedings of the ACM Multimedia Conference. ACM, New York, 25–32.
JEFFAY, K., STANAT, D. F., AND MARTEL, C. U. 1991. On non-preemptive scheduling of periodic and sporadic tasks. In Proceedings

of the of Real-time Systems Symposium. 129–139.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

58 • A. L. N. Reddy et al.

KIM, M. Y. 1986. Synchronized disk interleaving. IEEE Trans. Comput. C-35, 11, 978–988.
LEHOCZKY, J. 1990. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In Proceedings of Real-time Systems

Symposium. 201–212.
LIN, T. H. AND TARNG, W. 1991. Scheduling periodic and aperiodic tasks in hard real-time computing systems. In Proceedings

of ACM SIGMETRICS. ACM, New York, 31–38.
LIU, C. L. AND LAYLAND, J. W. 1973. Scheduling algorithms for multiprogramming in a hard real-time environment. J. ACM,

46–61.
LOUGHER, P. AND SHEPHERD, D. 1993. The design of a storage server for continuous media. The Comput. J. 36, 1 (Feb.), 32–42.
LUND, K. AND GOEBEL, V. 2003. Adaptive disk scheduling in a multimedia DBMS. In Proceedings of the ACM Multimedia

Conference. ACM, New York, 65–74.
MAKAROFF, D., NEUFELD, G., AND HUTCHINSON, N. 1997. An evaluation of vbr disk admission algorithms for continuous media

file servers. In Proceedings of the ACM Multimedia Conference. ACM, New York, 143–154.
MARTIN, C., NARAYAN, P. S., OZDEN, B., RASTOGI, R., AND SILBERSCHATZ, A. 1996. The Fellini Multimedia Storage System. Kluwer

Academic Publications, Chap. 5.
MOKBEL, M. F., AREF, W. G., ELBASSIONI, K., AND KAMEL, I. 2004. Scalable multimedia disk scheduling. In Proceedings of the

International Conference of Data Engineering. 498–509.
MOLANO, A., JUVVA, K., AND RAJKUMAR, R. 1997. Real-time file systems: Guaranteeing timing constraints for disk accesses in

rt mach. In Proceedings of the IEEE Real-Time Systems Symposium. IEEE Computer Society Press, Los Alamitos, Calif.,
155–165.

PATTERSON, D. A., GIBSON, G., AND KATZ, R. H. 1988. A case for redundant arrays of inexpensive disks (RAID). In Proceedings
of the ACM SIGMOD Conference. ACM, New York, 109–116.

PLAGEMANN, T., GOEBEL, V., HALVORSEN, P., AND ANSHUS, O. 2000. Operating system support for multimedia systems. The Comput.
Commun. J. 23, 3 (Feb.), 267–289.

REDDY, A. L. N. 1992. A study of I/O system organizations. In Proceedings of the International Symposium on Computer
Architecture. 308–317.

REDDY, A. L. N. AND BANERJEE, P. 1989. An evaluation of multiple-disk I/O systems. IEEE Trans. Comput. C-38, 12 (Dec.),
1680–1690.

REDDY, A. L. N. AND HASKIN, R. 1996. The Communications Handbook. CRC Press, Chapt. 106.
REDDY, A. L. N. AND WYLLIE, J. 1993. Disk scheduling in a multimedia I/O system. In Proceedings of the ACM Multimedia

Conference. ACM, New York, 225–233.
ROMPOGIANNAKIS, T., NERJES, G., MUTH, P., PATERAKIS, M., TRIANTAFILLOU, P., AND WEIKUM, G. 1998. Disk scheduling for mixed-

media workloads in a multimedia server. In Proceedings of the ACM Multimedia Conference. ACM, New York, 297–
302.

ROSE, O. 1995. Statistical Properties of MPEG video traffic and their impact on traffic modeling in ATM systems. Tech. Rep.
101, Institute of Computer Science, University of Wurzburg.

SALEM, K. AND GARCIA-MOLINA, H. 1986. Disk striping. In Proceedings of the International Conference on Data Engineering.
336–342.

SHENOY, P., GOYAL, P., AND VIN, H. M. 1999. Architectural considerations for next generation file systems. In Proceedings of the
ACM Multimedia Conference. ACM, New York, 457–467.

SHENOY, P. J., GOYAL, P., RAO, S., AND VIN, H. M. 1998. Symphony: An integrated multimedia file system. In Proceedings of the
ACM/SPIE Multimedia Computing and Networking. ACM, New York, 124–138.

SHENOY, P. J. AND VIN, H. M. 1998. Cello: A disk scheduling framework for next generation operating systems. Proc. ACM
SIGMETRICS 26, 1 (June), 44–55.

SHIH, W. K., LIU, J. W., AND LIU, C. L. 1992. Modified rate monotone algorithm for scheduling periodic jobs with deferred
deadlines. Tech. Rep. University of Illinois, Urbana-Champaign.

WIJAYARATNE, K. B. R. 2001. PRISM: A file server architecture for providing integrated services. Ph.D. dissertation, Department
of Computer Science, Texas A&M University, Texas.

WIJAYARATNE, R. AND REDDY, A. L. N. 1999a. Integrated QOS management for disk I/O. In Proceedings of the IEEE International
Conference on Multimedia Computing and Systems 1. IEEE Computer Society Press, Los Alamitos, Calif., 487–492.

WIJAYARATNE, R. AND REDDY, A. L. N. 1999b. Techniques for improving the throughput of VBR streams. ACM/SPIE Multimed.
Comput. Netw. 3654, 216–227.

WIJAYARATNE, R. AND REDDY, A. L. N. 2000. Providing QOS guarantees for disk I/O. Multimed. Syst 8, 1 (January), 57–68.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

www.manaraa.com

Disk Scheduling in a Multimedia I/O System • 59

WIJAYARATNE, R. AND REDDY, A. L. N. 2001. System support for providing integrated services from networked multimedia storage
servers. In Proceedings of the ACM Multimedia Conference. ACM, New York, 270–279.

YEE, J. AND VARAIYA, P. 1992. Disk scheduling policies for real-time multimedia applications. Tech. rep. University of California,
Berkeley, Berkeley, Calif..

YU, P. S., CHEN, M. S., AND KANDLUR, D. D. 1993. Grouped sweeping scheduling for dasd-based multimedia storage management.
IEEE Multimed. Syst. 1, 99–109.

Received November 2004; accepted December 2004

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, February 2005.

